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Behaviour of a polymer chain in the presence of fixed obstacles has been studied by the static Monte
Carlo simulations. A modified self-avoiding walk on a cubic lattice has been used to model the polymer in
an athermal solution. The statistical counting method has been applied to calculate the conformational
entropy of the chain, assumed to be grafted to an obstacle. Different chain lengths and obstacle curva-
tures have been examined. Some implications of the confinement induced changes in the conformational
entropy of polymer chains to the structure of complexes composed of long polymer chains and nano-
particles are discussed.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Properties of polymer molecules in the vicinity of interfaces are
modified by the confinement effect. The thermodynamics of an
isolated macromolecule in confining environment is a subject of
continuing theoretical interest because of its importance in many
areas including biology, medicine and nanotechnology. Predictions
of thermodynamic properties of a linear polymer molecule in the
presence of a confining environment of particular geometry are of
relevance in studying the encapsulation of macromolecules by lipid
membranes to form protocellular structures under prebiotic
conditions [1–4], the deformation of an elastic film (a bacteria cell
membrane) by a chain attached [5], the application of a macro-
molecule as a localized pressure microtool [6], the interaction
between particles coated by end-grafted homopolymers [7], the
polymer distribution in joint spherical domains (single or double
sphere occupancy) [8], the translocation of a polymer chain
through a hole and its biological consequences like the introduction
of viral DNA to the cytoplasm of bacterial cell or the exchange of
a genetic material in the conjugation of bacteria [9–11], microma-
nipulation of individual polymer molecules using AFM [12], and
many other processes.

The geometrical constraints applied to a free unperturbed
polymer chain (like the segment attachment to the surface of an
.
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object or imposition of volume constraints) reduce the number of
available conformations of the chain and introduce additional
interactions between polymer segments and the surface [13].
Hence, the properties of a polymer chain placed into a confining
environment are quite different from those of the chain in the bulk.
An essential thermodynamic property of the macromolecule and its
environment, which is a measure of the potential energy and the
spatial configuration, is the Helmholtz free energy [14]. The ther-
modynamic generalised forces, such as the pressure gradient, as
well as mechanical forces that may exist in the system can be
derived from the excess free energy.

There are two contributions to the Helmholtz energy, controlled
by the energetic and entropic properties of the system. Although
the energy contribution to the free energy can be quite easily found
in various simulation approaches, the estimation of the confor-
mational entropy of the chain is a more difficult task. Some
attempts aiming at a quantitative calculation of the conformational
entropy of polymer chain have been made by Monte Carlo (MC)
simulations employing the random self-avoiding walk (SAW) on
a lattice. The conformational entropy of a chain with both the
excluded volume effect and finite intersegment attractive or
repulsive interactions, was estimated by means of the SAW [15] and
some modifications of the SAW (e.g. the self-attracting SAW)
[15,16]. The exact entropies of free macromolecules were calculated
by means of the exact enumeration (EE) method for extremely
short chains [17,18] and from an asymptotic analytical equation
derived by means of the renormalization group (RG) theory for long
chains [19,20]. The conformational entropies of chains of
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Fig. 1. Visualization of the (112) SAW on a 3D cubic lattice. Circles denote lattice sites
blocked by segments connected by bonds generated by means of (112) algorithm.
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intermediate lengths were obtained by MC simulations associated
with the scanning method developed by Meirovitch [21,22],
hypothetical scanning method (used also in conjunction with
molecular dynamic simulations) [23] or statistical counting (SC)
method worked out by Zhao et al. [24]. The latter method was
applied to a free unperturbed chain [24] and to a chain terminally
attached to an impenetrable surface [25,26] and its results were
verified by a comparison with those of EE method and RG theory.

Depending on the polymer concentration, the chains terminally
attached to the surface may form structures from ‘‘cigars’’, built of
linear chains of blobs stretched out along the direction perpen-
dicular to the surface, at high polymer concentrations [27] to
a ‘‘mushroom’’ structure in low concentration regime, where the
mean separation between adjacent macromolecules is large
compared to their linear size [27,28]. Some rough approximations
of the reduction of the conformational entropy, caused by the
‘‘mushroom’’ structure formation at the flat surface, have been
made by Binder [29], who estimated the entropy loss by the
expression: (gfree� gatt)ln(N) with gfree� gatt¼ 0.5, where N is the
number of segments in the polymer chain and gfree and gatt denote
critical exponents referring to the infinite and semi-infinite space,
respectively. A similar dependence was proposed by Wu et al. [25]
on the basis of estimation of the efficient coordination number,
made by Whittington [30]. However, the simulations performed by
Wu et al. provided an evidently lower difference in the critical
exponents than that obtained by Binder. The situation gets even
more complicated if the surface is curved. The terminal attachment
of the polymer thread to the apex of the cone causes the confor-
mational entropy reduction with the ‘‘universal’’ exponent gatt

dependent on the conic tip’s angle [31]. Similar behaviour has been
found for the entropy of the chain tethered to the planar wedge,
both in two- and three-dimensional spaces [32–35].

The volume constraints of macromolecule environment also
reduce the number of accessible conformations of polymer chain
and, as a result, its conformational entropy. In the case of chains
confined in slits [36,37] and within tubes [38], the dependence
between the entropy loss and the ratio between an available space
and a linear dimension of free polymer coil can be described by
a simple power law with the universal exponent 1/n (where n is
equal to 1/2 and 0.588 for the ideal chain and the SAW model,
respectively). The relation between the entropy reduction due to
the spherical confinement and the chain length is more complex
and the screening of the excluded volume interactions is observed
[39].

The macromolecule in an athermal solution can be well
modelled by the SAW method on a simple cubic lattice. Never-
theless, some lattice modifications have been used recently in the
simulations of proteins and polypeptides. The modifications con-
sisted in the adaptation of different ways of selection of successive
repeat units in the chain, i.e. in using different vectors representing
the bonds between the nearest neighbour segments, given by
permutations of particular coordination sets. For example, Sikorski
and Romiszowski [40–43] used a (310) lattice based on the
(�3,�1,0) coordination set. The polymer chain modelled by this
method is very flexible as compared with that generated in a simple
cubic lattice. The coordination number of the lattice, u, is very high
and equals to 90 (for a simple cubic lattice u¼ 6). Moreover, the
angles between bonds reproduce conformations of real peptides
and proteins with great accuracy. The (311) lattice of u¼ 24 was
applied for the simulation of folded protein structure with a lattice
chain growth algorithm [44].

The main aim of the work presented here was to study a system
composed of a single isolated polymer thread and an obstacle, in
terms of its basic thermodynamic properties. In particular, we
focused on the study of excluded volume effects using the static MC
method applied to the SAW model. The algorithm of selection of the
segment location employed, based on (112) lattice representation,
is efficient for high segment densities and impenetrable interfaces
examined in this study. As the results obtained for the SAW model
can be related to the properties of a macromolecule in the athermal
solution, we studied the conformational entropy as the crucial
quantity fully determining the system properties. Although the
paper discusses only simplified athermal model of the polymer
solution, our results can be also used in the analysis of the entropy
contribution in the free energy of more complicated systems,
governed by specific interactions (e.g. electrostatic potentials
necessary for the full description of systems containing
biopolymers).

We have calculated the entropy and the free energy of defor-
mation of a polymer coil caused by its irreversible attachment with
one segment to surfaces of different curvatures. The conforma-
tional entropies obtained were used in the analysis of the structure
of objects built of a long polymer thread and nanoparticles.

2. Model

2.1. Generation of a polymer chain

We generated a sequence of statistically independent samples of
chain conformation by means of the static Rosenbluth–Rosenbluth
MC approach [45,46]. Each simulation was performed in the three-
dimensional primitive regular cubic lattice of a lattice constant a.
The simulation box contained one linear chain and, in some
simulations, obstacles of flat or curved surfaces. The chain was
represented by the modified SAW. The modification concerns the
way of the segment positioning in the lattice. Instead of the stan-
dard SAW model exhaustively described in Refs. [45–47], in which
each segment links two nearest lattice nodes, we used the algo-
rithm, in which the segments of the chain were connected by
vectors of the type [�a,�a,�2a],[�a,�2a,�a] and [�2a,�a,�a].
Further in the text, this algorithm is referred to as the (112) motion.
A fragment of the chain generated by this algorithm is shown in
Fig. 1. This generation method is similar to those applied for



Fig. 2. The effective coordination number ueff vs. the chain length N (grey line – a free
chain, black line – a chain terminally attached to a flat surface).
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simulations of polypeptides, where (123) and (023) algorithms
were used [43,44], and gives the coordination number u equal to
24. Such a high value of u results in a very large flexibility of the
chains generated.

No interactions are considered in the model except the excluded
volume of the polymer chains and the obstacles, i.e. no long range
and local potentials are present. In consequence, the system
behaves similarly to the athermal one and hence our model gives
an estimation of good solvent conditions [48].

The segment length l was equal to
ffiffiffi
6
p

a. The volume of the
simulation box was equal to (601a)3. The periodic boundaries of the
space were adopted. Simulations were performed for free (unper-
turbed) chains and for those attached with one segment to the
surface of an obstacle. Obstacles of flat and curved surfaces were
applied by blocking appropriate lattice sites prior to the chain
generation. The surface of obstacles was rigid and impenetrable to
the polymer. The surface was purely repulsive and there was no
chain adsorption (athermal surface) except the irreversible
attachment of an arbitrarily chosen segment. In consequence, the
influence of the surface on the polymer conformation was solely of
entropic character. The sites occupied by the obstacle and by the
polymer were marked in different ways in the space array. This
permitted distinction between the excluded volume effects caused
by the obstacle and by the chain. In order to simulate the confor-
mation of the macromolecule attached to the surface not by
a terminal segment but by another arbitrarily chosen one, two SAW
chains starting at the same point were generated. The sum of the
segment numbers in both chains was equal to the segment number
in the whole chain.

The chains of up to 1000 segments were considered. Each
segment occupied one lattice site. The number of sites blocked by
the obstacle was determined by the shape and the size of the
obstacle – all network sites placed at the distance larger than the
curvature radius of concave obstacles (cavities) or inside convex
obstacles (particles) were blocked. The position of the obstacle in
the simulation box was chosen in such a way that the macro-
molecule generated was located in the central part of the simu-
lation box.

Each data set presented in the paper was calculated as an
average of results obtained from 105 chain conformations. The
entropy results calculated by means of SC method converge fast to
the average; the relative standard deviation for the chain of 1000
segments obtained by 50 independent data sets of 105 conforma-
tions was equal to 3.3�10�6.

2.2. Calculation of conformational entropy of a chain

The conformational entropy of the SAW chain was calculated by
means of the SC method [24]. The method is based on the calcu-
lation of the quantity defined as:

u0eff ðiÞ ¼
Uðiþ 1Þ

UðiÞ (1)

where U(i) is the number of conformations of the chain of i
segments. The physical meaning of u0eff can be related to the
effective coordination number of the lattice. For the (112) algorithm
on the cubic lattice it takes a value of 24 for the first segment, then
u0eff � 23. If u0eff values are known, the total number of conforma-
tions of a chain built of N segments can be calculated from the
equation:

UðNÞ ¼
YN�1

i¼1

u0eff ðiÞ (2)
In our study, instead of u0eff , the average values obtained by the MC
sampling method, ueff, were used. The entropy of the chain, S, was
calculated from the equation:

S
kB
¼
XN�1

i¼1

ln
�

ueff ðiÞ
�

(3)

where kB is the Boltzmann constant.
In practice, the effective coordination number, ueff, corresponds

to the number of all empty sites (sites not filled by other segments
or by an obstacle) available for the placement of a successive
segment at each generation step. Finally, following Eq. (3), the
conformational entropy of the single chain was calculated as a sum
of logarithms of effective coordination numbers equivalent to
empty lattice sites found at each step of the chain generation. In
addition to the counting of empty sites, the sites occupied by the
obstacle and by the chain were also counted, in order to estimate
the excluded volume effects of the obstacle and the chain
separately.

In order to verify whether the method applied gives acceptable
results, the dependencies of the conformational entropy vs. the
segment number obtained for the unperturbed polymer chain were
carefully checked by comparison with the equation derived by RG
theory (see Section 3.1).

3. Results

3.1. Free chain and chain terminally attached to a flat surface

As has been proved by a comparison with the EE method and the
RG theory, the SC method gives correct results of the conforma-
tional entropy of free (001) SAW chains [24,26]. We employed the
method for the calculation of the effective coordination number
and the conformational entropy for (112) SAW in the system
studied here. In order to check the validity of the assumptions of
the model, we performed our calculation at first for the free chain.
The results of the calculation are shown in Figs. 2 and 3a. As seen in
Fig. 3a, the ueff starts with the value equal to the maximum coor-
dination number (24) of the lattice and then asymptotically



Fig. 3. The dependence of the chain conformational entropy S on the chain length N:
(a) a free chain, (b) a chain terminally attached to a flat surface.
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decreases to a value approximately of 22.22. The conformational
entropy vs. the chain length relation exhibits almost a linear trend
as illustrated in Fig. 3a. Numerical analysis of the simulation results
revealed that this relationship can be well described by the formula
derived from the RG theory for N / N [19,20]:

S
kB
¼ ln

�
Cfree

�
þ
�

gfree � 1
�

lnðNÞ þ N ln
�

ueff ;free

�
(4)

where a constant Cfree and an effective coordination number ueff,free

are the parameters dependent on the microscopical details of the
network applied and gfree is the universal exponent.

Table 1 presents the results of the fit of parameters of Eq. (4) to
the simulation results calculated by means of the nonlinear Lev-
enberg–Marquardt least square method [50]. Since the S¼ f(N)
dependence is almost exactly linear, the fitting was performed with
some parameters fixed. As seen, the parameters dependent on the
geometry of the lattice (Cfree, ufree) take different values for the
(001) and (112) models. The effective coordination number
obtained for (112) SAW agrees with the result obtained by the direct
estimation of ueff from data collected in Fig. 2. The universal
exponent gfree is close to the value 7/6 predicted by RG theory [51],
which indicates that the algorithms and methods of computation of
the conformational entropy of the free chain applied in the present
work give satisfactory results.

When a chain is terminally attached to an impenetrable planar
surface, half of the lattice sites in the nearest neighbourhood of the
segment anchored is filled by the obstacle. Hence, the effective
Table 1
Comparison of the parameters of Eq. (4) for (001) and (112) SAW chains, taken from
the literature and obtained by the fitting procedure, respectively.

Model Cfree gfree ueff,free

(001) 1.17 [49] 1.17 [50] 4.6838 [50]

(112) 1.160� 0.004 1.17a 22.22a

1.291� 0.009 1.17a 22.2151� 0.0003
1.23� 0.03 1.157� 0.004 22.22a

0.525� 0.009 1.363� 0.004 22.2021� 0.0003

a Fixed parameters.
coordination number starts at 12 and then tends asymptotically to
a value close to that obtained for the free chain (see Fig. 2). The
absolute values of the conformational entropies of the unperturbed
chains and of the chains tethered to an inert, impenetrable flat
surface do not differ significantly from each other, as illustrated in
Fig. 3.

The attachment of the terminal segment to the surface involves
several effects which can influence both the energy and the entropy
of the system. Generally, at a constant temperature, the free energy
of the chain attachment to the obstacle surface, DA, can be
expressed as:

DAðNÞ
kBT

¼ DU
kBT
� DSðNÞ

kB
¼ const� DSðNÞ

kB
(5)

where DU is the energy of irreversible attachment of the chain
segment to the surface and DS(N) denotes the change in the
conformational entropy caused by both the transfer of the chain of
length N from the bulk to near the surface and the attachment of its
terminal segment to this surface. According to athermal assump-
tions made above, the free energy vs. chain length dependence can
be expressed solely in terms of the change in the chain confor-
mational entropy DS.

The difference between the conformational entropy of free
(Sfree) and attached (Satt) chains, further referred to as the chain
attachment entropy (DS h Satt� Sfree), calculated for different chain
lengths, is shown in Fig. 4. Whittington [30] and Wu et al. [25]
postulated that the conformational entropy of the chain terminally
attached to the flat impenetrable surface can be described by the
expression similar to Eq. (4):

S
kB
¼ lnðCattÞ þ ðgatt � 1ÞlnðNÞ þ N ln

�
ueff ;att

�
(6)

where Catt, ueff,att and gatt are the parameters characterizing the
attached chain. Consequently, the chain attachment entropy, DS,
can be calculated as the difference between the values defined by
Eqs. (6) and (4):

DS
kB
¼ ln

Catt

Cfree
þ b ln N þ N ln

ueff ;att

ueff ;free
(7)
Fig. 4. The entropy of the terminal attachment of a chain to a flat surface: (a) the
double linear dependence, (b) the linear-logarithmic dependence (the black line –
results calculated from Eq. (7), the dotted line – results of Eq. (8), the grey line – results
calculated from Eq. (9), squares – results of the simulation).



Fig. 5. Plots of ueff vs. N (a) and DS vs. N (b) for the chains terminally attached to
convex surfaces of different curvature radii R (values of R are marked in figure). The
dependence for free chains is also given for comparison.
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Whittington [30] and Wu et al. [25] proposed a simplification of Eq.
(7). The simplification is based on the assumption that for very long
chains Cfree z Catt and ueff,free z ueff,att, so that the logarithms of the
corresponding ratios are close to zero and, hence, one obtains:

DS
kB
¼
�

gatt � gfree

�
ln N ¼ b ln N (8)

As seen in Fig. 4, Eq. (8), as well as a more general Eq. (7), poorly fits
the simulation results. Eq. (7) gives satisfactory results only for
large chain lengths (N> 500); for shorter chains the fit is poor. The
analysis of the ln(DS)¼ f(ln(N)) dependence shows that this rela-
tionship can be expressed by a simple power law:

DS
kB
¼ �H1Nb1 z� H1

ffiffiffiffi
N
p

(9)

where H1 and b1 are constants.
For short chains, the best fit to the simulation results is

produced by Eq. (9) (Fig. 4). The numerical values of the fitted
parameters of Eqs. (7)–(9) are listed in Table 2.

The scaling law reported by Eq. (9) is a consequence of the
reduction of the chain conformation number DU caused by the cut-
off of only peripheral parts of the polymer coil by the planar surface
[26]. Since the reduction of the conformational entropy is relatively
low it is proportional to the reduction of conformation number
since

DSwln
�

Uatt=Ufree

�
wln

�
1� DU=Ufree

�
w� DU=Ufree:

3.2. Chain terminally attached to a convex surface

The effective coordination numbers calculated for the chains
terminally attached to convex surfaces of different curvature radii,
R, are shown in Fig. 5a. The ueff vs. N dependencies lie in between
those obtained for the unperturbed chains in the bulk and the
chains terminally attached to the flat surface. The smaller the
radius, the smaller the difference between the values obtained for
the free and surface bound chains, except for the region of N� 50.
The objects of very small radii (R� 3l) practically do not affect the
value of the effective coordination number as compared with that
of the unperturbed chain. As seen in Fig. 5a, with increasing N, the
values of ueff asymptotically tend to the value corresponding to the
unperturbed chain.

The weak influence of small objects on the conformational
entropy of attached chains is also evidenced from the DS vs. N
dependencies, collected in Fig. 5b. The smaller the object radius, the
smaller the excluded volume, and hence the smaller the entropy
reduction. For extremely small objects, i.e. those whose radii are
comparable with the polymer segment length (R� 3l), the entropy
loss becomes independent of N (horizontal lines). It means that
such small objects bring about only a local perturbation in the coil
conformation. Thus, for N / N the value of DS depends only on the
object volume [26], VP:
Table 2
The parameters of Eqs. (7)–(9) obtained by the fitting procedure.

Equation number Symbol of parameter Value of parameter

(7) Cfree/Catt 17.6� 1.5
b �1.78� 0.02
ueff,free/ueff,att 0.9885� 0.0001

(8) b �2.34� 0.02
(9) H1 0.650� 0.002

b1 0.500� 0.001
DS
kB
¼ 1

2
ln VP (10)

3.3. Chain terminally attached to a concave surface

The generation of a polymer chain which is terminally attached
to the inner surface of a sphere is a difficult task in a situation
when the sphere volume is small and especially, when the
number of the lattice sites in the available space is comparable
with the number of polymer segments. The difficulty could be
overcome satisfactorily by applying the modified (112) SAW
model. The modified algorithm presented produces very a flexible
chain which can be quite easily packed into small cavities espe-
cially if the algorithm generating the chain chooses each following
segment position only from empty lattice sites. The algorithm
allowed generation of a chain consisting up to 1000 segments and
confined into a spherical cavity with a radius as small as 5l (such
a cavity can comprise about 7700 segments). For the cavity radii
of 4l and 3l the mean number of segments in the successfully
generated chains was 720 and 300, respectively, which corre-
spond to the segment concentration in the cavity of about 0.18.
The simulation results are collected in Fig. 6, showing ueff vs. N
(Fig. 6a) and DS vs. N (Fig. 6b) curves obtained for the chains
terminally attached to the inner surface of cavities of different
radii. As seen, for extremely small cavities (of radii smaller than
5l) the value of ueff quickly reduces to zero and the process of
chain generation stops. For large cavities, the ueff¼ f(N) depen-
dencies are practically linear, except for their initial parts corre-
sponding to very short chains.

One can notice in Fig. 6b that at a certain cavity radius the
dependencies between DS and N change their bending direction.
The R value at which the reversal of bending direction of curves
takes place (R¼ RC) can be related to the transition between the
weak and the strong confinement regimes, introduced by Sakaue
and Raphäel [52]. In the N range examined, the RC value does not
depend on the chain length but it is influenced by lattice properties.
The RC value is approximately equal to�10l (or �24.5a, see Fig. 6b).

3.4. Comparison between different surface curvatures

Fig. 7 presents the DS¼ f(N) dependencies in the logarithmic
scale, obtained for both concave and convex surfaces. As seen, only



Fig. 6. Plots of ueff vs. N (a) and DS vs. N (b) for the chains terminally attached to
concave surfaces of different curvature radii (, – R¼�3l, B – R¼�4l, 6 – R¼�5l
and 7 – R¼�7l; curves obtained for the flat surface are in black (R¼N); curves at the
critical curvature radius (R¼�10l) are dotted).

Fig. 8. The dependence of jDSj on the absolute value of the surface curvature radius for
N¼ 1000 (a) and DSconvex vs. DSconcave dependencies for different chain lengths (b).
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the dependence obtained for the flat surface can be approximated
by a power law. The relationships obtained for curved surfaces
deviate from the power-law behaviour. The smaller the curvature
radius of the surface, the greater the deviation. The magnitude of
the deviation can be attributed to an increase in the value of the
second logarithmic component of Eq. (7) with decreasing R.

Fig. 8a shows an exemplary dependence of ln(jDSj) on the
absolute value of R (jRj describes surface curvatures of the same
magnitude but of the opposite signs) for a chain built of N¼ 1000
segments. In the range of small values of jRj the differences in
entropies calculated for concave and convex surfaces are
Fig. 7. Plots of DS vs. N for surfaces of different curvatures (, – R¼�3l, B – R¼�4l, 6 –
R¼�7l, 7 – R¼ 2l, 9 – R¼ 3l and 8 – R¼ 4l). The straight line marked in black
represents the case of flat surface.
significant, and the smaller the absolute radius, the greater the
difference. With the flattening of surfaces the difference vanishes
and, in both cases, when jRj/ N the values of ln(jDSj) tend to
a common value, corresponding to the entropy of chain attachment
to the flat surface.

An interesting feature of the ln(jDSj)¼ f(jRj) plots is that for the
same N, they are almost symmetrical with respect to the ordinate
equal to ln(jDSj) for the flat surface. This symmetry allows the
formulation of an approximate power relation:

ðDSconvexðRÞÞb2 DSconcaveð�RÞ ¼
�

DSflat

�1þb2
(11)

where DSconvex, DSconcave and DSflat denote the entropies of the
chain attachment to convex, concave and flat surfaces, respectively.
As illustrated in Fig. 8b, the lines calculated from Eq. (11) at
b2¼1.60� 0.01 z 8/5 well reproduce the simulation results.

There are two factors influencing the effective coordination
number and, hence, the conformational entropy of the polymer in
the vicinity of the surface: the excluded volume of the polymer
segments and the excluded volume of the obstacle. In order to
handle both factors separately, we have enumerated lattice sites
blocked by the polymer segments and by the obstacle. Thus, the
effective coordination number can be divided into three
components:

ueff ðiÞ ¼ u�
�

achainðiÞ þ asurf ðiÞ
�

(12)

where achain and asurf are the mean numbers of lattice sites blocked
by the polymer segments and the object of a given shape, respec-
tively. The effective coordination number and its components are
functions of the segment’s number i.

The results obtained for both concave and convex surfaces are
collected in Figs. 9–11.

As seen in Fig. 9, the dependencies between asurf and N, when
plotted on a log–log scale, are not straight lines, except for the flat
surface. For the chains attached to convex surfaces all dependencies
between asurf and N are monotonic in the simulated range of N
values (Fig. 9a). For concave surfaces the asurf–N curves have a flat
region, whose length increases with a decreasing R to N ratio
(Fig. 9b). Moreover, for the smallest two cavities of the radii R¼�4l
and �3l, after a certain chain length is exceeded, a sudden increase
in asurf is observed.



Fig. 9. Plots of asurf vs. N for positive (a) and negative (b) values of R (The straight line
marked in black represents the case of R¼N, in (b) the cavity radius varies from �100l
to �3l).

Fig. 11. Plots of achain vs. N for convex (a) and concave (b) surfaces of different
curvatures (R values are equal to 5l and 30l (a) and vary from �100l to �3l (b),
respectively). The dependence representing the flat surface (R¼N) is also included
and marked in black.
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We found that the plots of ln(asurf/aflat) against ln(N), where aflat

corresponds to R¼N, give straight lines for chains grafted to
convex surfaces (Fig. 10). Thus, they can by described by the
following approximate expression:

asurf

aflat
¼ kNb3 þ 1 (13)

where k and b3 are constants; b3¼ 0.600� 0.005 z 3/5.
The properties of the third component of Eq. (12) were also

studied in a wide range of chain lengths and surface curvature
radii. The results obtained are summarized in Fig. 11 in the form
of dependencies between achain and N for positive (Fig. 11a) and
negative (Fig. 11b) values of R. For convex surfaces (i.e.
Fig. 10. The dependencies asurf/aflat� 1¼ f(N) obtained for convex surfaces of different R.
spherical objects like, for instance, colloidal particles) the
character of the curves is similar in the whole range of R values.
For concave surfaces the shape of the curves changes with the
changing R; the most distinct changes appear in the range of
small values of R, where a dramatic increase in achain takes
place.

The dependencies of the effective coordination number and its
components on the segment number shown in Figs. 6a, 9b and 11b
are represented by smooth curves which do not exhibit any artifi-
cial effects of the lattice properties of the model. Only for relatively
long chains and cavity radii equal to 4l or less, the numerical
instability caused by the lattice discrete steplike shape of the cavity
is observed.
3.5. Grafting by any segment

Let’s now assume that the segment by means of which
a macromolecule is attached to the surface can be located in any
position along the chain. Such macromolecule can be represented
by two shorter chains terminally attached to the same point of the
wall, and consisting of N1 and N2 segments. The conformational
entropy of this molecule is expected to be smaller than that of the
end-attached polymer, because the two parts of the chain mutually
restrict the accessible space.

In order to evaluate the contribution of the excluded volume
effect, arising from these extra intrachain excluded volume
interactions, on the conformational entropy of the whole macro-
molecule, let us consider a phantom chain, that is a chain divided
into two parts by the plane which immobilizes a segment located
in the intersection point and is impenetrable to the other
segments. In the phantom chain the extra intrachain excluded
volume effect is absent, as the two parts of the chain are located
at opposite sides of the wall. Thus, the conformational entropy of
the phantom chain can be obtained by the summation of the
contributions of both its parts. These contributions can be sepa-
rately calculated from Eq. (9).



W. Nowicki et al. / Polymer 50 (2009) 2161–21712168
In Fig. 12, the influence of the partition ratio z (which is defined
as z¼N1/N, where N1 is the number of segments in one of the two
parts of the chain) on the conformational entropy of the chain
attached is compared to that of the phantom chain. As expected, in
the whole range of z values (except for z¼ 0 and z¼ 1) the entropy
of the attached chain is smaller. The contribution of the extra
intrachain excluded volume interactions in the entropy reduction
is, as results from the comparison of the corresponding depen-
dencies in Fig. 12, of the same order of magnitude as the contri-
bution arising from the influence of the flat wall on the phantom
chain.

The simulation results obtained for the chain attached at any
point to the flat surface are well approximated by the equation

DS
kB
¼ �H1

ffiffiffiffi
N
p � ffiffiffiffiffiffiffiffiffiffiffi

1� z
p

þ
ffiffiffiffiffiffiffiffiffiffiffi
z� 1

p �
(14)

with the prefactor equal to H1¼0.65� 0.01 as in Eq. (9).
Let us now imagine a process in which the contact point

between the polymer and the surface shifts along the chain (the
value of z changes continuously like during the passing a thread
through an eye of a needle). Changes in the z value are accompa-
nied by changes in the conformational entropy of the chain. These,
in turn, cause the emergence of the entropic force F. At a constant
temperature this force is equal to the derivative of the change in
free energy upon the shift of the chain, DA, with respect to the
length x of the chain section built of N1 segments:

F ¼
�

vDA
vx

�
T
¼
�

vconst
vx

�
T
�T
�

vDS
vx

�
T
¼ �T

�
vDS
vx

�
T

¼ � T
Nl

�
vDS
vz

�
T

(15)

Finally, the force reads

Fl
T
¼ �1

N

�
vS
vz

�
T
¼ H1kB

2
ffiffiffiffi
N
p

 
1ffiffiffiffiffiffiffiffiffiffiffi

1� z
p � 1ffiffiffi

z
p
!

(16)
Fig. 12. Conformational entropy of a chain of N¼ 1000 as a function of the junction
point location – comparison of simulation results with those calculated from Eq. (14)
and obtained for the phantom chain.
As results from Eq. (16), the net force acting along the chain equals
zero for z¼ 1/2 (which corresponds to the situation when the chain
is attached to the surface by its middle segment) whereas the
highest absolute value of the force is reached for the terminally
attached chain, that is for both z¼ 0 and z¼ 1. Thus, in the light of
Eq. (16), one can conclude that if the junction point can move along
the chain, the configuration consisting of one long tail is preferable
over that of two shorter chains.

Now, let us consider the conformational entropy of a chain
which is grafted through an arbitrarily chosen segment to
a spherical object (a particle) of the mean curvature radius R.
The effective coordination number of the anchor segment is
strongly reduced, which involves changes in ueff values of the
other segments. The extent of change depends on the distance,
measured along the chain, from the anchor segment. When the
distance increases, the ueff value also increases tending
asymptotically to the common value, approximately equal to 22,
as it results from Fig. 13 presenting the dependencies between
ueff and the segment’s index i for different anchor segment
locations.

The influence of the partition ratio on the chain conformational
entropy for different particle radii is shown in Fig. 14a. All depen-
dencies exhibit minima at the same z value, corresponding to the
attachment through the middle segment. The depth of the
minimum increases with the increasing curvature radius of
particle, indicating that the larger the object, the greater the
entropy loss accompanying the chain attachment (as shown in
Fig. 14b).

The relationships between S and z, presented in Fig. 16a, can be
described by an equation similar to that for the terminal attach-
ment to the flat surface (Eq. (14)), but with the prefactor given by
the approximate expression:
Fig. 13. Dependencies ueff¼ f(i) for a chain of N¼ 1000 and different anchor segment
locations (represented by values of z, which are given in figure).



Fig. 14. Relationship between S and x for a chain of N¼ 1000 attached to particles of
different radii (R values are indicated in figure) (a) and the depth of minimum
(expressed by a difference between S values corresponding to z¼ 0 and z¼ 0.5 for
a given R) vs. R (b).

Fig. 15. The net entropic force F exerted by a chain of N¼ 1000 on particles of different
radii as a function of the separation ratio z (values of R are indicated in figure).
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H2 ¼
H1

1þ B
l
R

(17)

where the constant B¼ 10.0� 0.05.
Now, let us assume as before, that the junction point between

the polymer and the particle surface can shift along the chain (the
particle can be imagined as a ball rolling along the line). Because
the shifting involves changes in the conformational entropy of the
chain, the net force F exerted by the chain on the particle also
changes. On the basis of Eq. (14) with prefactor given by Eq. (17) we
obtain the following expression for the net force:

Fl
T
¼ �1

N

�
vS
vz

�
T
¼ H1RkB

2ðRþ BlÞ
ffiffiffiffi
N
p
 

1ffiffiffiffiffiffiffiffiffiffiffi
1� z

p � 1ffiffiffi
z

p
!

(18)

The relationships between the separation ratio and the value of F
for different particle radii are shown in Fig. 15. As results, if the
polymer is attached by its middle segment, the net force exerted on
the particle surface is zero, which is a metastable situation at the
entropy minimum. The entropy maximum, which corresponds to
the largest force exerted by the chain, is attained when the particle
is situated at one of the chain ends. In this situation the system
configuration is the most stable.
Fig. 16. Schematic representation of the movement of a nanoparticle along a polymer
chain (a) and the most probable structures of complexes composed of a single polymer
chain and reversibly adsorbed nanoparticles (b).
3.6. Complexes with nanoparticles

It is well known that even if the energy of adsorption of
a single segment is small, the homopolymer may adsorb quite
strongly. It is because a macromolecule attaches to the surface at
many contacts and its desorption is highly unlikely, since it
requires the rupture of all polymer–surface bonds at the same
time [53]. However, if the surface curvature radius is small (as in
the case of nanoparticles), the number of polymer–surface
contacts is strongly reduced, and thus the polymer detachment
can proceed quite readily. It has been shown that if a particle is
very small as compared with the size of polymer, the adsorbed
chain assumes a conformation with a large fraction of tail
segments and only a small fraction in the form of loops with
multiple surface contacts [54–57].

Let us now consider a very long homogenous polymer chain (i.e.
whose all segments have the same affinity to the surface)
interacting with a small particle (R� RG). The initially formed
polymer–nanoparticle complex will relax to a state of minimum
free energy. The relaxation will proceed through individual
segment attachment/detachment events, i.e. when the particle
moves along the chain one broken polymer–surface contact is
replaced by another newly formed contact, as it is schematically
shown in Fig. 16a. If the adsorption energy of individual segments is
not too high, the net entropic force originating from the presence of
tails will cause the movement of the particle towards one of the
chain ends. The particle will not be detached from the chain, if the
effect of the increase in internal energy DU prevails over the effect
of the increase in the conformational entropy of the tail, that is if for
each desorbing segment the following inequality is fulfilled:

DU > TDS (19)

Let’s notice that DU of the particle translocation along the chain is
equal to zero since each detached segment is replaced by another
one. Thus, if the above occurs, one may conclude that the most
probable structure of a complex, consisting of a long polymer chain
and a nanoparticle, contains one tail only (unlike the two-tail
structure postulated elsewhere) [56,57]. This conclusion is consis-
tent with results of Bonet Avalos et al. [55], who found that for
rather small adsorption energies a particle has a preference to
occupy positions near the edge of the chain.



Table 3
Specification of the main processes considered in the paper and the corresponding
equations for calculation of changes in conformational entropy of a polymer chain.

System Process Equation

Terminal attachment
of a polymer chain to a
planar surface

DS=kB ¼ �H1
ffiffiffiffi
N
p

Terminal attachment
of a polymer chain to a
curved surface

DS=kB ¼ �HðRÞ
ffiffiffiffi
N
p
� KðRÞN2

Shifting, along a polymer
chain, of the location of
a segment connecting
a macromolecule with
a planar surface

DS=kB ¼ �H1
ffiffiffiffi
N
p
ð
ffiffiffiffiffiffiffiffiffiffiffi
1� z

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
z� 1

p
Þ

Shifting, along a polymer
chain, of the location of
a segment connecting
a macromolecule with
a spherical particle

DS=kB ¼ �H1
ffiffiffiffi
N
p

=ðRþ BlÞð
ffiffiffiffiffiffiffiffiffiffiffi
1� z

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
z� 1

p
Þ
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The above considerations can be extended to multiparticle
complexes, where two or more particles are attached to a single
long polymer chain (Fig. 16b). To this end, let us consider
a complex composed of two identical particles whose geomet-
rical sizes as well as the radius of electrostatic repulsion between
them are small as compared with the chain length. Assume
additionally that before the second particle is being attached, the
first one is located at one of the chain ends. The attachment of
the second particle can take place somewhere along the chain.
Thus, one can distinguish two chain sections in the complex:
a tail section with one free end and a bridging section connecting
the particles. The shift of the second particle along the chain
involves changes in the contributions of both sections to the total
entropy of the complex. If the position of the second particle is
determined by the partition ratio z, the entropy change due to
the tail formation, as compared with the entropy of the unper-
turbed chain of the same length, can be assumed to scale as
(1� z)1/2, according to Eqs. (14) and (17). For the evaluation of
the contribution of the bridging section let’s suppose that the
entropy cost, resulting from the immobilization of two ends of
a chain, is equivalent to the entropy reduction caused by the
chain confinement into a space of characteristic size D, which
scales with the chain dimension as (RG/D)2 [58]. Hence, if one
assumes that the timescale of the relaxation of the particle–
particle distance is longer than that of the relaxation of the
conformation of chain section, the entropy reduction for the
bridging section scales as DS w z2v. The sum of both contributions
gives the asymmetric dependence of the complex entropy vs. z,
which indicates that the situation when both particles are located
near the same end of the chain will be preferred.

4. Concluding remarks

The conformation of a linear flexible polymer molecule near
impenetrable interfaces of different curvatures has been studied.
The study addresses the problem in the athermal limit, in which
only excluded volume interactions are considered. The polymer
chain was modelled as a self-avoiding walk (SAW) on a cubic lattice.
The segment positions in the lattice were chosen by the (112)
algorithm. Flat, convex and concave surfaces were considered. The
macromolecule was represented by a chain which was either
placed in the bulk or permanently attached to the interface through
one segment. The effective coordination number of the lattice, ueff,
and the absolute conformational entropy of the chain, S, were
calculated by means of the SC method associated with the static MC
sampling method. By introducing the distinction between the
lattice sites blocked by the polymer segments and those blocked by
an object of a given surface curvature, we were able to estimate
relative contributions of the excluded volume effects, arising from
intersegmental interactions and from the presence of the interface,
in the overall entropy change. On the basis of analysis of simulation
results, a power-law correlation between the entropy of the chain
terminally attached to the flat wall and the chain length in the
range of N ˛< 1, 1000>, as well as modifications of the correlation
for the chains attached to curved interfaces, were formulated. The
presented study also revealed that the attachment of the chain
through the terminal segment is of the lowest entropy cost as
compared with one point attachment by other segments, since in
the last case the excluded volume effects of two parts of attached
chain interfere. An equation relating the entropy of the chain with
its length, the location of an anchor segment and the curvature
radius of the interface was formulated. Analysis of the results
obtained for convex interfaces allowed some predictions to be
made about the structure of complexes composed of long linear
macromolecules and nanoparticles.
The precise calculation of the entropy contribution to the excess
free energy caused by different spatial constraints of the polymer
chains has a relevance that extends well beyond the realm of
fundamental polymer physics. The system containing polymer
chains tethered to the concave surfaces discussed here can be
treated as simplified representation of the DNA molecule tethered
inside a protein pore [59] as well as a model of core of polymeric
micelles [60]. On the other hand, the polymer chain tethered to the
convex surface allows the modelling of the phenomena governing
the stability of colloidal systems in the presence of very long
polymer chains [61].

In conclusion, the equations for the calculations of changes in
the conformational entropy of the polymer chain, caused by the
constraints discussed in the paper, are collected in Table 3.
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